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R E S E A R C H R E P O R T

Enhancing the Equating of Item Difficulty Metrics:
Estimation of Reference Distribution

Usama S. Ali1 & Michael E. Walker1,2

1 Educational Testing Service, Princeton, NJ
2 Present address: College Board, New York, NY

Two methods are currently in use at Educational Testing Service (ETS) for equating observed item difficulty statistics. The first method
involves the linear equating of item statistics in an observed sample to reference statistics on the same items. The second method, or
the item response curve (IRC) method, involves the summation of conditional observed item statistics across the reference population
total score frequencies. This article introduces a quick and effective method for obtaining the reference distribution for the transition
from the linear equating method to the IRC method without recalculating all the item difficulties. More specifically, a mathematical
formula is derived to estimate the score distribution of a reference group that maintains the current item difficulty scale. Future research
is needed to compare the performance of the two approaches.
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This article concerns two methods currently in use at Educational Testing Service (ETS) for equating observed item dif-
ficulty statistics. The first method involves the linear equating of item statistics in an observed sample to statistics on
the same items for some reference population. The second method involves the summation of conditional (on total score)
observed item statistics across the reference population total score frequencies (i.e., poststratification). This article focuses
on the transition from the linear equating method to the poststratification method. More specifically, the article explains
the process by which the reference population total score distribution can be estimated from a set of equated item statistics.
This reference distribution is a key component of the poststratification method. A mathematical formula is established to
retrieve the score distribution of a reference group that maintains the current item difficulty scale.

Notation

Before we present any equations using any of the symbols, we present this notation list.
Let i index the items to be analyzed, from 1 to I.
Let x represent the total score on the test, and let j index the total score levels, from 1 to J.
Let f j represent the relative frequency of score xj in the examinee group for which the score distribution is known (the

observed group).
Let gj represent the relative frequency of score xj in the examinee group for which the score distribution is unknown

(the reference group).
Let pij represent the proportion of correct answers to item i, for the observed-group examinees with total score xj.
Let qij represent the proportion of correct answers to item i, for the reference-group examinees with total score xj.
Let pi represent the proportion of correct answers to item i in the full observed group.
Let qi represent the proportion of correct answers to item i in the full reference group.

Item Difficulty Equating

The proportion of correct responses, or p value, is a commonly used index of item difficulty. For any given item, the p value
depends upon the ability of the examinee group. For this reason, it is necessary in any testing program to set a difficulty
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scale by defining the p value in some fixed reference population. Whenever p values are observed for any examinee group,
they are transformed to the metric of this reference group.

One way to transform observed p values to the reference group metric is to obtain a set of items, across a wide range
of difficulty, for which we have computed p values for the observed as well as the reference groups. We use these data to
estimate a function relating observed p values to reference p values. We can then apply this function to other observed p
values from the same examinee group to estimate the corresponding item difficulties in the reference group.

Tucker (1987) observed that the p value is an S-shaped function of person ability. This function can be approximated
by a normal ogive. By applying an inverse normal transformation to the p value, we obtain an item difficulty index that
is approximately linearly related to ability. At ETS, the resulting scale is called the delta scale. More specifically, the delta
scale, centered at a value of 13 and with an effective range1 of 6 (very easy item) to 20 (very difficult item), results from
applying the following two-parameter normal-ogive transformation to the proportion correct item statistic for some item
i (Holland & Thayer, 1985):

Δi = 13 − 4Φ−1 (pi
)
, (1)

where Φ− 1(·) is the inverse function of the cumulative normal distribution. Once the item difficulty indices have been
transformed in this way, the transformation relating observed to reference values may be approximated using the mean-
sigma linear equating method. Equating observed delta indices to those in the reference group makes the item difficulty
indices comparable across different examinee samples. The resulting equated delta values may be converted back to p
values corresponding to the reference group.

The method described above constitutes a functional method, frequently used by testing programs, for adjusting item
difficulty indices to the reference population. It involves administering a set of anchor items for which equated item
statistics exist, along with any new items to a group of examinees. The resulting observed delta values are linked to the
equated delta values through a linear (i.e., mean-sigma) procedure. Then the resulting linear parameters (i.e., slope and
intercept) are used to obtain reference deltas for nonanchor items, which only have observed deltas.

One problem with the linear method is that the function relating observed to reference difficulty statistics is usually
based on few (perhaps around 20) data points. Equating with such small numbers leads to relatively large error. For a
given middle difficulty item, the item statistics estimated in this way from various samples of items can differ by as much
as one delta point (roughly 10 points in terms of percent correct). For more difficult items, the range of estimated item
difficulties can be even larger. The only way to decrease the error substantially is to greatly increase the number of items
that are repeated across the two groups of examinees. For many reasons, such a route is not feasible.2

Fortunately, another method exists for adjusting p values. This method generates empirical item response curves (IRCs;
i.e., proportion correct, or p values, conditioned on total score) for all items administered to a given examinee group. Given
the total score distribution for the reference group, we can compute reference p values by multiplying the conditional values
by the relative frequencies at the corresponding score points and then summing across the reference distribution.

As with the linear method, the error in this poststratification method can be reduced by increasing the sample size.
Unlike with the linear method, with the poststratification method, people rather than anchor items constitute the sample.
Thus, even with relatively few items, so long as the number of examinees is large enough, the resulting adjusted statistics
will be very precise.

We might expect that for large-scale testing programs, the poststratification method is preferable to the linear method
in terms of precision. If this is indeed the case, testing programs using the linear method may have to be changed to the
poststratification method. To do so, it would be necessary to have the total score distribution in the reference group. For
more established testing programs, that distribution may no longer be available. The program could always just choose the
examinees from an arbitrary test administration to use as the reference group and set the item difficulty scale anew. That,
however, would require resetting the statistical specifications for all tests, as well as recomputing the reference difficulty
statistics for every item in the pool for every test title. Given the effort involved and the disruption caused by such a plan,
we explored another alternative.

The remainder of this article illustrates how we can estimate the current reference distribution from a set of items that
have both observed and reference item difficulty statistics. By doing so, we can maintain the current item difficulty scales
while transitioning from the linear to the poststratification item difficulty equating method. The mechanism illustrated
here is much less labor-intensive than resetting the difficulty scale to a more recent reference distribution. To estimate the
reference score distribution, we work with the item means or p values for the reference group.
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Estimation of Reference Distribution

Setup

Consider the situation in which the empirical IRCs for I test items are plotted against a J-point total score. This total
score does not represent the sum of the I test items. Rather, the score is reported on a scale that is independent of the
items generating the IRCs (e.g., we could use the scaled score typically associated with a large-scale testing program). The
empirical IRCs delineate conditional pij values at each total score point xj. If we know the empirical IRCs and the observed
total score frequencies pij, then we can compute the pi values in the observed population.

Let us start with the total score xj and the proportion correct values p. We represent the height of the IRC for item i at
total score j by pij. Given f j, the relative frequency of scores xj in the observed population, we can compute the observed
p value pi for item i by

pi =
∑

j
fjpij (2)

for i= 1, … , I and j= 1, … , J.
In a similar way, if we have the empirical IRCs and the reference population, we can estimate the qi values that would

result if the items were given to the reference population. We do this by substituting the relative frequencies for the refer-
ence population in Equation 2.

qi =
∑

j
gjqij. (3)

Problem

We have observed values f j for all score points xj for some group of examinees (the total score distribution in the observed
group). We want to estimate the gj (the total score distribution in the reference group). The solution below presents the
mathematical formula for deriving the reference distribution score frequencies gj given the reference and observed p value
statistics. The total test score considered in this context is the scaled score.

Solution

Let us start with a set of I items with item difficulty estimates corresponding to both the observed and reference pop-
ulations. For any dichotomous item i, assume that the IRC (i.e., the p values conditioned on examinee total score) is
invariant across different subpopulations. Thus, we can use the pij values (the conditional correct-answer proportions in
the observed group) as estimates for the qij (the conditional correct-answer proportions in the reference group). We may
want to smooth the IRC using some techniques such as loglinear presmoothing (see Holland & Thayer, 2000).

We also have estimates for the qi values, obtained by transforming the equated delta values (found using the linear
method described above).

Recall from Equations 2 and 3 that for any item i, pi =
∑

j
pijfj and qi =

∑

j
qijgj.

Applying the second of these two equations at each score level j,

q11g1 + q12g2 + … + q1JgJ = q1(ref)

q21g1 + q22g2 + … + q2JgJ = q2(ref)

…

qI1g1 + qI2g2 + … + qIJgJ = qI(ref). (4)

To solve this set of equations, we need at least as many items as there are points on the total score scale (i.e., I ≥ J),
so that the number of equations is at least as great as the number of unknown values. The unknown values in the series
of I simultaneous equations in Equation 4 are the relative frequencies at the total score points. So the matrix equation
would be

QI×JgJ×1 = qI×1.
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Figure 1 Empirical item response curves (IRCs) for 10 items over 6 score points.

In general, i≠ j, so we have to premultiply both sides of the equation by Q′ to get

QJ×I
′ QI×JgJ×1 = QJ×I

′ qI×1.

Then we can premultiply both sides by (Q ’ Q)− 1 to get

g =
(

Q ′ Q
)−1 Q ′ q. (5)

The values in matrix g are the unknown reference group frequencies that we want to estimate.

Numerical Example

In Figure 1, 10 items are displayed (I = 10), each with probability of correct response (0 to 1) plotted against total score (100,
110, 120, 130, 140, and 150, i.e., J = 6). Each IRC was generated using a two-parameter normal-ogive model, whose mean
and standard deviation are given in Table 1. The resulting conditional pij values are shown in Table 2, the item-by-score
matrix.

The observed and reference score distribution are described by the relative frequencies that appear below the condi-
tional pij (Table 2, the last two rows). We obtain the observed pi (Table 2, second column) by multiplying the conditional
by the corresponding relative frequencies and summing. The reference qi (Table 2, third column) is computed in the same
way. In this example, the pij are the same as qij. In general, we would assume that the conditional p values are the same in
both populations.

In our case, the solution, using the derived formula in Equation 5, is presented in Table 3. These resulting reference
relative frequencies are exactly the same as those shown in Table 2, last row.

Practical Considerations and Remarks

The current item analysis design for some testing programs uses an observed score model for item analysis and the linear
model for delta equating. This article explains a quick and effective method for obtaining the reference distribution without
recalculating all the item difficulties for all test titles. On the other hand, the application of the new approach for delta
equating has several consequences and more challenges that we need to highlight and to solve before we can implement
the new approach operationally.

First, the improved precision of the IRC approach compared to the linear model needs to be verified. An estimation
of the variability in estimating the equated difficulty indices needs to be established (e.g., either analytically or using the
bootstrap method) to compare the two competing approaches of delta equating. Also, we need to check the robustness of
estimated item difficulty using the IRC approach against the poor estimation of item difficulty of one or two items.
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Table 1 Parameters of Normal-Ogive Item Response Curves (IRCs)

Parameters

Item Mean SD

1 1.00 1.2
2 1.33 0.8
3 1.66 0.9
4 1.99 1.3
5 2.32 1.4
6 2.65 2.0
7 2.98 0.6
8 3.31 1.0
9 3.64 0.8
10 3.97 2.0

Table 2 The Probabilities of Correct Responses on Each Item at Different Total Scores

pij (Empirical item response curves)

Item pi qi 100 110 120 130 140 150

1 .8287 .9423 .2023 .5000 .7977 .9522 .9938 .9996
2 .8149 .9509 .0482 .3400 .7988 .9816 .9996 .0000
3 .7305 .9094 .0326 .2317 .6472 .9317 .9953 .9999
4 .6216 .8175 .0629 .2232 .5031 .7814 .9390 .9897
5 .5424 .7501 .0487 .1729 .4096 .6864 .8849 .9722
6 .4745 .6452 .0926 .2047 .3726 .5695 .7502 .8800
7 .3467 .6669 .0000 .0005 .0512 .5133 .9554 .9996
8 .2886 .5514 .0005 .0104 .0951 .3783 .7549 .9545
9 .1938 .4566 .0000 .0005 .0202 .2119 .6736 .9554
10 .2579 .4140 .0236 .0688 .1623 .3138 .5060 .6967

f j .0214 .1359 .3413 .3413 .1359 .0241
gj .0013 .0214 .1359 .3413 .3413 .1587

Table 3 The Resulting Reference Relative Frequencies per Score

xj gj

100 .0013
110 .0214
120 .1359
130 .3413
140 .3413
150 .1587

Second, determining the timing of executing the IRC method during the operational cycle is essential. More specifically,
is it possible to implement the IRC method during preliminary item analysis (PIA), conducted before test equating? Or, is
the method only feasible for final item analysis (FIA), conducted after the test is equated? The timing is important because
it is related to the more challenging problem of defining the total score upon which the item statistics are conditioned.
Raw scores over different administrations are not comparable, such that the IRCs cannot be invariant across these different
subpopulations. This leads us to the use of scaled scores, which are not available for PIA (because the current test has not
yet been equated). We may consider conducting a preliminary equating to facilitate PIA; then we would need to investigate
how much imprecision or bias such a procedure added to the item difficulty estimation.

Third, the previous challenge leads to the question: Which anchor item is not performing properly, based on which
criteria, when evaluating the equating set for (score and) delta equating? In the linear procedure, these equating items are
evaluated through delta plots that are typically used to identify items that performed differently across the two samples.
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One delta plot depicts the relationship between the observed and output deltas with a bandwidth of 2 SD around the fitted
line. The other plot illustrates the relationship of the difference between output and input equated deltas on one axis with
the input delta on the other axis. The rule of thumb is to detect items satisfying |output Δ− input Δ|≥ 2.0. In the IRC
approach, we can similarly illustrate the delta difference to evaluate the equating set.

Fourth, the minimum number of items (or test forms) needed to get robust estimates of the reference group distribution
is still among the research questions to be answered for best practice. Other challenges are related to designing procedure
that can be implemented easily.

In summary, the above mentioned issues that might affect the implementation of the reference group delta equating
approach need further investigation. Our next step is to tailor a study to address some of these issues and find reliable and
valid solutions.
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Notes

1 Theoretically, delta ranges from −∞ to +∞. Practically speaking, we will rarely use items easier than a delta value of 6 (p= .96)
or harder than a delta value of 20 (p= .04) on a test.

2 Equating error is inversely proportional to the square root of the sample size. Thus, to reduce the error by one half, we need to
include four times as many anchor items (i.e., previously exposed items). Most testing programs work to minimize the number of
reused items across test forms.
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